Abstract

The auditory system encodes time with sub-millisecond accuracy. To shed new light on the basic mechanism underlying this precise temporal neuronal coding, we analyzed the neurophonic potential, a characteristic multiunit response, in the barn owl's nucleus laminaris. We report here that the relative time measure of phase delay is robust against changes in sound level, with a precision sharper than 20 micros. Absolute measures of delay, such as group delay or signal-front delay, had much greater temporal jitter, for example due to their strong dependence on sound level. Our findings support the hypothesis that phase delay underlies the sub-millisecond precision of the representation of interaural time difference needed for sound localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.