Abstract
DNAJB6 is a prime example of an anti-aggregation chaperone that functions as an oligomer. DNAJB6 oligomers are dynamic and subunit exchange is critical for inhibiting client protein aggregation. The T193A mutation in the C-terminal domain (CTD) of DNAJB6 reduces both chaperone self-oligomerization and anti-aggregation of client proteins, and has recently been linked to Parkinson's disease. Here, we show by NMR, including relaxation-based methods, that the T193A mutation has minimal effects on the structure of the β-stranded CTD but increases the population and rate of formation of a partially folded state. The results can be rationalized in terms of β-strand peptide plane flips that occur on a timescale of ≈100 μs and lead to global changes in the overall pleat/flatness of the CTD, thereby altering its ability to oligomerize. These findings help forge a link between chaperone dynamics, oligomerization and anti-aggregation activity which may possibly lead to new therapeutic avenues tuned to target specific substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Angewandte Chemie (Weinheim an der Bergstrasse, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.