Abstract

The stretch of the perimeters of alveolar ducts was measured at the surface of saline-filled specimens of human and dog lung parenchyma that were stretched biaxially. The microscopic stretch of these ducts was measured at several levels of isotropic biaxial macroscopic stretch of the parenchyma with stretch ratio (lambda x = lambda y) in the range of 1.20-1.40, which roughly corresponds to tidal breathing in humans and dogs. Alveolar walls were found to be load-carrying elements in the saline-filled lung, as seen by their straightness at all levels of stretch. Quantitatively, let l, A, L, and S denote, respectively, the duct perimeter length and area and the parenchymal target perimeter and area in the deformed state and lo, Ao, Lo, and So the corresponding variables in the undeformed state. The microscopic stretch ratio of the ducts (l/lo) was found to be approximately 4% larger than the macroscopic stretch ratio (L/Lo) in human lung and approximately 10% larger in dog lung. The microscopic area ratio of the ducts (A/Ao) was found to be approximately 10% larger than the macroscopic area ratio (S/So) in human lung and approximately 22% larger in dog lung. Ducts within human parenchyma were seen to be about twice as stiff as ducts within dog parenchyma over the range of macroscopic stretch studied. This correlates with the volume fractions of collagen and elastin being higher in the human lung than in dog lung. The observed nonuniformity in strain field at the microstructural level suggests the need to include a force balance between alveolar ducts and septal walls when modeling the mechanics of saline-filled parenchyma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call