Abstract

Microscopic mechanisms are clarified for Raman scattering of collective modes, i.e., amplitude and phase modes in the charge density wave (CDW) state of transition metal dichalcogenides. We study three phonon process in triple CDW state and effects of partial destruction of the Fermi surface due to the phase transition. It has then been understood how both phase and amplitude modes are given Raman activity and how A-E splittings of both modes and the commensurability pinning of the phase mode are related to the three phonon process. We can also explain change of Raman intensity of the originally Raman active A 1g phonon mode at phase transition as interference between paramagnetic and diamagnetic contributions for 2HTaSe 2 as well as other materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.