Abstract

A detailed analysis of the optical and transport properties of semiconductor superlattices in the high-field regime is presented. Electronic Bloch oscillations and the resulting terahertz emission signals are computed including phonon damping in the presence of the electric field. The modifications of the phonon-induced terahertz signal decay are analyzed including the movement of the carriers in the field (intracollisional field effect). For elevated fields it is shown that the interplay between electric field and electron-phonon interaction leads to resonance structures in the terahertz damping rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.