Abstract
A systematic microscopic theory of magnetically induced ferroelectricity and lattice modulation is presented for all electron configurations of Mott-insulating transition-metal oxides. Various mechanisms of polarization are identified in terms of a strong-coupling perturbation theory. Especially, the spin-orbit interaction acting on the ligand p orbitals is shown to give the ferroelectric polarization of the spin-current form, which plays a crucial role particularly in eg systems. Semiquantitative agreements with the multiferroic TbMnO3 are obtained. Predictions for X-ray and neutron scattering experiments are proposed to clarify the microscopic mechanism of the spin-polarization coupling in different materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.