Abstract
We review and discuss the first fully three-dimensional study of non-equilibrium carrier dynamics governing semiconductor-based intersubband optoelectronic devices, such as quantum-cascade lasers. First, a multisubband Monte Carlo simulation scheme in a kinetic Boltzmann-like approach is presented. Then, its generalization into a density-matrix quantum-transport formalism is discussed. This allows us to directly access microscopic key features of the electron relaxation dynamics (without resorting to phenomenological parameters) as well as to investigate the nature, coherent versus incoherent, of charge injection/transport processes. Applications to state-of-the-art mid-infrared quantum-cascade lasers and novel far-infrared emitters are reviewed. The extremely good agreement between theoretical results and experimental findings demonstrates that our approach is a valid and predictive tool for the understanding of charge transport in these quantum devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.