Abstract

The microscopic theory of irreversible processes that we developed is summarized and illustrated, using as a simple example the Friedrichs model. Our approach combines the Poincaré's point of view (dynamical interpretation of irreversibility) with the Gibbs-Einstein ensemble point of view. It essentially consists in a nonunitary transformation theory based on the symmetry properties of the Liouville equation and dealing with continuous spectrum. The second law acquires a microscopic content in terms of a Liapounov function which is a quadratic functional of the density operator. In our new representation of dynamics, which is defined for a restricted set of observables and states, this functional takes a universal form. We obtain, in this way, a semi-group description, the generator of which contains a part directly related to the microscopic entropy production. The Friedrichs model gives us a simple field theoretical example for which the entropy production can be evaluated. The thermodynamical meaning of life-times is explicitly displayed. The transition from pure states to mixtures, as well as the occurrence of long tails in thermodynamic systems, are also briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call