Abstract
The microscopic quantum-mechanical expressions for the Born-von Karman force constants in an arbitrary solid, crystalline or amorphous, are derived in terms of the complete inverse dielectric function ${\ensuremath{\epsilon}}^{\ensuremath{-}1}(\mathrm{r}, {\mathrm{r}}^{\ensuremath{'}})$ of the electrons The many-body nature of the electrons is treated exactly; only the Born-Oppenheimer approximation is made. Born's translation and rotation invariance conditions are shown to be satisfied by the microscopic force constants. In the case of a perfect crystal, it is shown for the first time that the microscopic formulas recapture completely the phenomenological form of the dynamical matrix; in particular, the microscopic expression for the effective charge in an insulator is found. We prove that the charge neutrality of the system implies the "effective charge neutrality" condition and that, consequently, all acoustic-mode frequencies vanish at long wavelength. This condition may be stated as a useful property of ${\ensuremath{\epsilon}}^{\ensuremath{-}1}$ which we term the acoustic sum rule. Many results of the phenomenological theory, e.g., the generalized Lyddane-Sachs-Teller relation, carry over exactly to the microscopic theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.