Abstract

We study a doped transition metal dichalcogenide (TMDC) monolayer in an optical microcavity. Using the microscopic theory, we simulate spectra of quasiparticles emerging due to the interaction of material excitations and a high-finesse optical mode, providing a comprehensive analysis of optical spectra as a function of Fermi energy and predicting several modes in the strong light-matter coupling regime. In addition to exciton-polaritons and trion-polaritons, we report polaritonic modes that become bright due to the interaction of excitons with free carriers. At large doping, we reveal strongly coupled modes corresponding to excited trions that hybridize with a cavity mode. We also demonstrate that the increase of carrier concentration can change the nature of the system’s ground state from the dark to the bright one. Our results offer a unified description of polaritonic modes in a wide range of free electron densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.