Abstract

We qualitatively extend a microscopic dynamical theory for the transverse confinement of infinitely thin rigid rods to study topologically entangled melts of flexible polymer chains. Our main result treats coils as ideal random walks of self-consistently determined primitive-path (PP) steps and exactly includes chain uncrossability at the binary collision level. A strongly anharmonic confinement potential ("tube") for a primitive path is derived and favorably compared with simulation results. The relationship of the PP-level theory to two simpler models, the melt as a disconnected fluid of primitive-path steps and a "supercoarse graining" that replaces the entire chain by a needle corresponding to its end-to-end vector, is examined. Remarkable connections between the different levels of coarse graining are established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.