Abstract

This work proposes a simple and affordable technology for the manufacturing of a miniature end-face fiber-optic temperature sensor based on a Fabry–Perot interferometer formed from a transparent UV-curable resin. For the manufactured working prototype of the sensor, the sensitivity and operating temperature range were determined, and the methods for their enhancement were proposed. Due to its small size, the proposed type of sensor can be used in high-precision and minimally invasive temperature measurements, in biology for microscale sample monitoring, and in medicine during operations using high-power lasers. A microwave photonic method is proposed that enables the interrogation of the sensor without using an optical spectrum analyzer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.