Abstract
We report on the microscopic surface structure of carbon-fiber-reinforced silicon carbide (C/SiC) composite mirrors that have been improved for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and other cooled telescopes. The C/SiC composite consists of carbon fiber, silicon carbide, and residual silicon. Specific microscopic structures are found on the surface of the bare C/SiC mirrors after polishing. These structures are considered to be caused by the different hardness of those materials. The roughness obtained for the bare mirrors is 20 nm rms for flat surfaces and 100 nm rms for curved surfaces. It was confirmed that a SiSiC slurry coating is effective in reducing the roughness to 2 nm rms. The scattering properties of the mirrors were measured at room temperature and also at 95 K. No significant change was found in the scattering properties through cooling, which suggests that the microscopic surface structure is stable with changes in temperature down to cryogenic values. The C/SiC mirror with the SiSiC slurry coating is a promising candidate for the SPICA telescope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.