Abstract

Single color centers in solid have emerged as promising physical platforms for quantum information science. Creating these centers with excellent quantum properties is a key foundation for further technological developments. In particular, the microscopic understanding of the spin-bath environments is the key to engineer color centers for quantum control. In this work, we propose and demonstrate a distinct high-temperature annealing (HTA) approach for creating high-quality nitrogen vacancy (N-V) centers in implantation-free diamonds. Simultaneously using the created N-V centers as probes for their local environment we verify that no damage is microscopically induced by the HTA. Nearly all single N-V centers created in ultralow-nitrogen-concentration membranes possess stable and Fourier-transform-limited optical spectra. Furthermore, HTA strongly reduces noise sources naturally grown in ensemble samples, and leads to more than threefold improvements of decoherence time and sensitivity. We also verify that the vacancy activation and defect reformation, especially H3 and P1 centers, can explain the reconfiguration between spin baths and color centers. This distinct approach will become a powerful tool in vacancy-based quantum technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call