Abstract

Employing the most recent parametrization of the baryon-baryon interaction of the Nijmegen group, we investigate, in the framework of the Brueckner-Bethe-Goldstone many-body theory at zero temperature, the influence of neutrino trapping on the composition, equation of state, and structure of neutron stars, relevant to describe the physical conditions of a neutron star immediately after birth (protoneutron star). We find that the presence of neutrinos changes significantly the composition of matter delaying the appearance of hyperons and making the equation of state stiffer. We explore the consequences of neutrino trapping on the early evolution of a neutron star and on the nature of the final compact remnant left by the supernova explosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.