Abstract

Gamow-Teller (GT) and spin-dipole (SD) states in 208Bi are studied by using self-consistent Hartree-Fock + Tamm-Dancoff approximation taking into account the coupling to the continuum. Most of SD strength is found at the excitation energy Ex≈ 25MeV with a very broad width, which agrees with recent experimental observations. It is shown that Landau damping effect is responsible for the large width of SD peak, while the escape width is found to be at most 1MeV. We study also electric dipole (E1) transitions between GT and SD states in 208Bi. Main E1 transitions for 0- and 1- states are found near excitation energy expected from Brink's hypothesis in which SD states are considered as E1 resonances built on the GT state. Calculated E1 transition strengths between GT and SD states are compared with the analytic sum rules within one-particle one-hole (1p-1h) configuration space and within both 1p-1h and 2p-2h model space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.