Abstract
We report on muon spin rotation (muSR) studies of the superconducting and magnetic properties of the ternary intermetallic stannide Ca3Ir4Sn13. This material has recently been the focus of intense research activity due to a proposed interplay of ferromagnetic spin fluctuations and superconductivity. In the temperature range T=1.6-200 K, we find that the zero-field muon relaxation rate is very low and does not provide evidence for spin fluctuations on the muSR time scale. The field-induced magnetization cannot be attributed to localized magnetic moments. In particular, our muSR data reveal that the anomaly observed in thermal and transport properties at T*~38 K is not of magnetic origin. Results for the transverse-field muon relaxation rate at T=0.02-12 K, suggest that superconductivity emerges out of a normal state that is not of a Fermi-liquid type. This is unusual for an electronic system lacking partially filled f-electron shells. The superconducting state is dominated by a nodeless order parameter with a London penetration depth of lambda=385(1) nm and the electron-phonon pairing interaction is in the strong-coupling limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.