Abstract
The microscopic structure of the low-energy electric dipole response, commonly denoted as pygmy dipole resonance (PDR), was studied for ^{120}Sn in a ^{119}Sn(d,pγ)^{120}Sn experiment. Unprecedented access to the single-particle structure of excited 1^{-} states below and around the neutron-separation threshold was obtained by comparing experimental data to predictions from a novel theoretical approach. The novel approach combines detailed structure input from energy-density functional plus quasiparticle-phonon model theory with reaction theory to obtain a consistent description of both the structure and reaction aspects of the process. The presented results show that the understanding of one-particle-one-hole structures of the 1^{-} states in the PDR region is crucial to reliably predict properties of the PDR and its contribution to nucleosynthesis processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.