Abstract

The microscopic structure of hydrogen-boron complexes in silicon, which result from the passivation of boron-doped silicon by hydrogen, has been extensively debated in the literature. Most of the debate has focussed on the equilibrium site for the H atom. Here we study the microscopic structure of the complexes using parameter-free total-energy calculations and an exploration of the entire energy surface for H in Si:B. We conclusively show that the global energy minimum occurs for H at a site close to the center of a Si-B bond (BM site), but that there is a barrier of only 0.2 eV for movement of the H atom between four equivalent BM sites. This low energy barrier implies that at room temperature H is able to move around the B atom. Other sites for H proposed by others as the equilibrium sites are shown to be saddle points considerably higher in energy. The vibrational frequency of the H stretching mode at the BM site is calculated and found to be in agreement with experiment. Calculations of the dissociation energy of the complex are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.