Abstract

Microscopic traffic simulation models are being increasingly used to evaluate Intelligent Transportation Systems (ITS) strategies and to complement empirical data in developing new analytical procedures and methodologies. Lane changing rules are an essential element of any microscopic traffic simulation model. While most of these rules are based on theories and hypotheses, to date no attempt has been made to investigate the consistency of lane changing behaviour from microscopic simulation with empirical observations. The research presented in this paper examined this consistency at freeway weaving areas using empirical data. These data were collected in the late 1980s at several major freeway weaving sections in the State of California. The microscopic traffic simulation model INTEGRATION was used to perform simulation experiments in this research. Vehicle distributions, both total and by type of movement, were used as measures to investigate the lane changing activity that took place at these freeway areas. This examination revealed significant agreement between patterns of lane changing behaviour as observed in the field and as reproduced by microscopic simulation. Most quantitative discrepancies were shown to be a function of user-specified input data or due to some inherent limitations in the empirical data.Key words: simulation, lane changing, weaving, freeways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.