Abstract
Considering optimal alignments of two i.i.d. random sequences of length $n$, we show that for Lebesgue-almost all scoring functions, almost surely the empirical distribution of aligned letter pairs in all optimal alignments converges to a unique limiting distribution as $n$ tends to infinity. This result helps understanding the microscopic path structure of a special type of last-passage percolation problem with correlated weights, an area of long-standing open problems. Characterizing the microscopic path structure also yields robust alternatives to the use of optimal alignment scores alone for testing the homology of genetic sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.