Abstract

Across a variety of spatial scales, from nanoscale biological systems to micron-scale colloidal systems, equilibrium self-assembly is entirely dictated by-and therefore limited by-the thermodynamic properties of the constituent materials. In contrast, nonequilibrium materials, such as self-propelled active matter, expand the possibilities for driving the assemblies that are inaccessible in equilibrium conditions. Recently, a number of works have suggested that active matter drives or accelerates self-organization, but the emergent interactions that arise between solutes immersed in actively driven environments are complex and poorly understood. Here, we analyze and resolve two crucial questions concerning actively driven self-assembly: (i) how, mechanistically, do active environments drive self-assembly of passive solutes? (ii) Under which conditions is this assembly robust? We employ the framework of odd hydrodynamics to theoretically explain numerical and experimental observations that chiral active matter, i.e., particles driven with a directional torque, produces robust and long-ranged assembly forces. Together, these developments constitute an important step towards a comprehensive theoretical framework for controlling self-assembly in nonequilibrium environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.