Abstract

Molecular dynamics simulations were carried out to investigate the microscopic origin of the deviation from Stokes-Einstein behavior observed in the dynamics of KSCN aqueous solutions. When the solution becomes more concentrated, the rotational mobilities of SCN(-) and water bifurcate significantly as also observed in the experimental ultrafast infrared measurements. The translational mobilities of different components, on the other hand, have similar concentration dependences. Furthermore, when concentrating the solution, the mobilities increase slightly first and then reduce afterward. Our simulations revealed that these phenomena observed in the dynamics originate from the ion assembling in the solution. The RDF and pair residence time analysis further suggest the ion pairing effect has significant contribution to the ion assembling. Results herein thus provide a microscopic insight on the origin of the ion assembling phenomenon and its connection with various experimentally observable dynamical phenomena in the ionic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.