Abstract

Liquid water is known to reorient via a combination of large angular jumps (due to exchange of hydrogen bonding (H-bond) partners) and diffusive orientations. Translation of the molecule undergoing the orientational jump and its initial and final H-bond acceptors plays a key role in the microscopic reorientation process. Here, we partition the translational dynamics into those occurring during intervals when rotating water molecules (and their initial and final H-bonding partners) undergo orientational jump and those arising when molecules wait between consecutive orientational jumps. These intervals are chosen in such a way that none of the four possible H-bonds involving the chosen water molecule undergo an exchange process within its duration. Translational dynamics is analysed in terms of the distribution of particle displacements, van Hove functions, and its moments. We observe that the translational dynamics, calculated from molecular dynamics simulations of liquid water, is fastest during the orientational jumps and slowest during periods of waiting. The translational dynamics during all temporal intervals shows an intermediate behaviour. This is the microscopic origin of temporal dynamic heterogeneity in liquid water, which is mild at 300 K and systematically increases with supercooling. Study of such partitioned dynamics in supercooled water shows increased disparity in dynamics occurring in the two different types of intervals. Nature of the distribution of particle displacements in supercooled water is investigated and it reveals signatures non-Gaussian behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call