Abstract

Mathematical models of the spread of epidemic diseases are studied, paying special attention to networks. We treat the Susceptible-Infected-Recovered (SIR) model and the Susceptible-Exposed-Infectious-Recovered (SEIR) model described by differential equations. We perform microscopic numerical simulations for corresponding epidemic models on networks. Comparing a random network and a scale-free network for the spread of the infection, we emphasize the role of hubs in a scale-free network. We also present a simple derivation of the exact solution of the SIR model.

Highlights

  • We show the simulational results of the microscopic SIR model on the ER network

  • Because we mainly focus on the comparison of the microscopic simulation with the epidemic model of differential equations, in the rest of the paper we do not deal with the cases of the absorbing states

  • As an example of network, we performed a simulation of the microscopic SEIR model on the ER network

Read more

Summary

Introduction

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.