Abstract
A microscopic theory for the interaction between semiconductor quantum-well structures and laser fields based on the semiconductor Bloch equations is applied to vertical-cavity surface-emitting lasers (VCSELs) with the inclusion of plasma heating. The semiconductor Bloch equations are reduced to a set of equations for the first and second moments of the carrier distribution functions. Plasma heating and many-body effects are then studied by solving this set of equations in steady state under the approximation of a single transverse and longitudinal mode. The transverse- and longitudinal-mode dynamics of VCSELs is analyzed by solving the full space-time-dependent problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.