Abstract

A microscopic-level model is proposed for exploring degraded performance in electron transport and photodetection devices, based on pre-calculated results as initial conditions for meso-scale approaches, including ultra-fast displacement cascade, intermediate defect stabilization and cluster formation, and slow defect reaction and migration. The steady-state spatial distribution of point defects in a mesoscopic-scale layered system will be studied by taking into account the planar dislocation loops and spherical neutral voids as well. These theoretical efforts are expected to be crucial in fully understanding the physical mechanism for identifying defect species, performance degradations, and the development of mitigation strategies. Additionally, verification of the current model by device characterization is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.