Abstract
Zinc based nanostructures are very promising material for pH sensing since they allow the realization of low-cost, sustainable, and high sensitivity electrodes. The pH sensitivity reported in literature for different ZnO nanostructures spreads from sub- to super-Nernstian, with the microscopic mechanism behind the H+ detection often unrevealed. In this work we synthesize by hydrothermal process and thermal annealing two zinc based nanowalls (NWLs) consisting of layered hydroxide zinc nitrate Zn5(OH)8(NO3)2·2H2O (as grown) and zinc oxide ZnO (annealed) phases, respectively. Scanning electron microscopy, micro Raman spectroscopy, X-ray photoemission spectroscopy were used to characterize the morphology and structure of NWLs. Electrochemical chronopotentiometric analysis in standard buffer solutions (pH 4 to 9) was used to study the response towards pH. Despite the two zinc based NWLs have the same morphology (interconnected sheets 10-20 nm thin, 1.4–1.7 μm wide), truly different behavior as pH sensitive electrodes are evidenced. As grown NWLs show a super-Nernstian response (+83.7 mV/decade), whereas annealed NWLs show a sub-Nernstian response (+27.1 mV/decade). The data are satisfactorily modeled by considering the crystallographic structures and assuming that layered hydroxide zinc nitrate NWLs is sensitive to only H+ (with two simultaneous and independent mechanisms), while zinc oxide NWLs is simultaneously and independently sensitive to both H+ and OH−. These data and the proposed modeling are useful to further develop the pH sensitivity of electrodes based on ZnO nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.