Abstract

Excitation mechanisms of Er 3 + ion in crystalline silicon, responsible for the photoluminescence at λ1.54 μm, are reexamined in view of the new information revealed for this system by two-color spectroscopy in the visible and the midinfrared. We argue that the appearance of the midinfrared induced emission from the 4 I 1 3 / 2 excited state of Er 3 + and the recently identified afterglow effect represent characteristic fingerprints of a specific and so far unrecognized excitation path, different from the usually considered exciton-mediated energy transfer. We propose a microscopic model of this mechanism, where excitation of Er 3 + is accomplished in two distinct steps: electron localization at an Er-related donor level and its subsequent recombination with a hole. These two stages can be separated in time, leading to a situation when the appearance of Er photoluminescence is controlled by availability of one carrier type only. We propose a set of rate equations to describe this process and show that the experimental data are well accounted for. Further, we consider potential of the nonexcitonic mechanism for realization of efficient temperature-stable emission from Er-doped crystalline silicon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.