Abstract

The relaxed configurations of yttria-stabilised zirconia (YSZ) between 3 and 10 mol % of Y2O3 were modeled using the pseudopotential technique. In the displacive limit of a double-well potential model, the vibrational mode corresponding to the soft phonon in pure c-ZrO2 was calculated for each Y2O3 composition. These anharmonic vibrations, associated with the stabilization of YSZ, were investigated within the self-consistent phonon approximation making obtainable the fine structure in spectral density. In studying the phonon dynamics, we use the displacement probability density, which can quantify very accurately the transition temperature necessary for stabilizing the YSZ cubic phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.