Abstract

A polarization measurement is proposed to detect a birefringence and an optical rotation distribution in a microscopic area. A residual stress caused by industrial processes and molecular orientation are observed by visualizing birefringence distribution. It is possible to analyze components of material with optical rotation. This measurement system consists of a He-Ne laser, polarizers, a half-wave and a quarter-wave plate. By changing combination of rotating angle of half-wave plate, quarter-wave plate and analyzer, we can obtain retardation, azimuthal angle of birefringence and optical rotation angle independently. An analytical algorithm with local-sampling phase shifting is employed for achieving a high resolution. The errors caused by the initial polarized characteristic of the optical system are corrected by subtracting the in-phase vector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call