Abstract

In the previous paper I \cite{bhagwat20} we have shown that self-consistent Extended Thomas-Fermi (ETF) potentials and densities associated with a given finite-range interaction can be parametrized by generalized Fermi distributions. As a next step, a comprehensive calculation of ground-state properties of a large number of spherical and deformed even-even nuclei is carried out in the present work using the Gogny D1S force within the ETF scheme. The parametrized ETF potentials and densities of paper I are used to calculate the smooth part of the energy and the shell corrections within the Wigner-Kirkwood semiclassical averaging scheme. It is shown that the shell corrections thus obtained, along with a simple liquid drop prescription, yield a good description of ground-state masses and potential energy surfaces for nuclei spanning the entire periodic table.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.