Abstract

Atomization of fuel sprays is a key factor in the control of combustion quality in direct-injection engines. In the present work, the near-field spray patterns of 2-methylfuran (MF), ethanol (ETH) and isooctane (ISO) under non-flash boiling and flash boiling conditions were investigated using an ultra-highspeed imaging technique. Fuel was injected from a single-hole solenoid injector into an optically accessible constant volume chamber at the injection pressure of 40 MPa. Various conditions were tested, ranging from non-flash boiling conditions (ambient) to flare-flash boiling conditions with fuel temperatures of 20 °C and 80 °C and different back pressures. High-speed imaging was performed using a long-distance microscope coupled with an ultra-highspeed camera (1 million fps). Results showed that under flash boiling conditions, near-nozzle spray patterns changed significantly and clear radial expansion was observed due to bubble formation and explosion. Among the three fuels, MF showed the most intense flash boiling behavior due to it having the highest vapor pressure. The effects of different non-dimensional numbers were also considered and it was found that saturation ratio and cavitation number were the two main governing factors for the near-nozzle spray behaviors. During the end of the injection process, the low effective pressure led to poorly atomized spray with a compact liquid column and large ligaments; this could result in poor air/fuel mixing and thus higher HC and particle emissions. Significant improvements were observed at Rs = 0.2 where flash boiling greatly promoted the spray atomization, even with low fuel velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.