Abstract

Semiconductor nanowires (NWs) are promising candidates for use in electronic and optoelectronic applications, offering numerous advantages over their thin film counterparts. Their performance relies heavily on the quality of the contacts to the NW, which should exhibit ohmic behavior with low resistance and should be formed in a reproducible manner. In the case of heterostructure NWs for high-mobility applications that host a two-dimensional electron gas (2DEG), ohmic contacts are particularly challenging to implement since the NW core constituting the conduction channel is away from the NW surface. We investigated contact formation to modulation-doped GaAs/(Al,Ga)As core/shell NWs using scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX) and electron tomography (ET) to correlate microstructure, diffusion profile and chemical composition of the NW contact region with the current-voltage (I-V) characteristics of the contacted NWs. Our results illustrate how diffusion, alloying and phase formation processes essential to the effective formation of ohmic contacts are more intricate than in planar layers, leading to reproducibility challenges even when the processing conditions are the same. We demonstrate that the NW geometry plays a crucial role in the creation of good contacts. Both ohmic and rectifying contacts were obtained under nominally identical processing conditions. Furthermore, the presence of Ge in the NW core, in the absence of Au and Ni, was found as the key factor leading to ohmic contacts. The analysis contributes to the current understanding of ohmic contact formation to heterostructure core/shell NWs offering pathways to enhance the reproducibility and further optimization of such NW contacts.&#xD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call