Abstract
An identification of herbal plants from its powder form is a challenging task. In this paper, a new method for identification and classification of herbal plants liquorice, rhubarb and dhatura using the microscopic image is proposed. This paper evaluates the effectiveness of the shape and texture-based features with a different classifier for herbal plants classification. Three-shape and five-texture features are computed for each object. The effectiveness of the individual shape and texture-based features set and their combinations are investigated using a support vector machine, K-nearest neighbour and ensemble classifier. The highest 94.9% classification accuracy was achieved by combining all shape features using the bagged tree ensemble classifier. While using a combination of texture-based features almost 99.8% classification accuracy is obtained using fine K-nearest neighbour and cubic-support vector machine classifier. Further, by combining shape and texture-based features classification efficiency achieved is 99.3% with quadratic-support vector machine. From the analysis of simulation results, it is found that texture-based features are more effective to classify a microscopic image of herbal plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.