Abstract

Hydration of ion pairs is an essential process in various physicochemical phenomena occurring in solutions. Isolated clusters of an ion pair solvated with finite number of waters have been considered as a model system for the critical evaluation of microscopic interactions involved in the process, and theoretical studies have contributed exclusively to the subject up to now. Here we report the first experimental characterization of structure and internal dynamics of hydrated ion pairs, NaCl-(H2O)n (n = 1-3). The measurements of their rotational spectra have proven that the clusters have cyclic forms, in which Na+ and Cl- ions are strongly interacted with the O and H atoms of the solvent molecules, respectively. The Na-Cl distance shows a pronounced increase with the successive addition of water molecules. The separation for n = 3 approaches the value predicted for the contact ion-pair state in aqueous solution by recent molecular dynamics simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.