Abstract

The effects of fluctuations in the irradiance onScenedesmus quadricauda, Chlorella vulgaris andSynechococcus elongatus were studied in dilute cultures using arrays of red light emitting diodes. The growth rate and the rate of photoinhibition were compared using intermittent and equivalent continuous light regimes in small-size (30 ml) bioreactors. The CO2 dependent photosynthetic oxygen evolution rates in the intermittent and continuous light regimes were compared for different light/dark ratios and different mean irradiances. The kinetics of the electron transfer reactions were investigated using a double-modulation fluorometer. The rates of photosynthetic oxygen evolution normalized to equal mean irradiance were lower or equal in the intermittent light compared to the maximum rate found in the equivalent optimal continuous light regime. In contrast, the growth rates in the intermittent light can be higher than the growth rate in the equivalent continuous light. Photoinhibition is presented as an example of a physiological process affecting the growth rate that occurs at different rates in the intermittent and equivalent continuous lights. The difference in the dynamics of the redox state of the plastoquinone pool is proposed to be responsible for the low photoinhibition rates observed in the intermittent light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.