Abstract
Reflection asymmetric, octupole shapes in nuclei are a prominent aspect of nuclear structure, and have been recurrently studied over the decades. Recent experiments using radioactive-ion beams have provided evidence for stable octupole shapes. A variety of nuclear models have been employed for the related theoretical analyses. We review recent studies on the nuclear octupole shapes and collective excitations within the interacting boson model. A special focus is placed on the microscopic formulation of this model by using the mean-field method that is based on the framework of nuclear density functional theory. As an illustrative example, a stable octupole deformation, and a shape phase transition as a function of nucleon number that involves both quadrupole and octupole degrees of freedom are shown to occur in light actinides. Systematic spectroscopic studies indicate enhancement of the octupole collectivity in a wide mass region. Couplings between the octupole and additional degrees of freedom are incorporated in a microscopic manner in the boson system, and shown to play a crucial role in the description of the related intriguing nuclear structure phenomena such as the shape coexistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.