Abstract

We discuss the neck rupture stage of fission and the emission of particles afterwards, two extremely rapid and highly non-equilibrium processes. Currently, the neck rupture cannot be directly probed by experiment, highlighting the importance of reliable theoretical predictions for this stage of fission. Time-dependent density functional theory (TDDFT) is used to simulate the spontaneous fission of 252Cf. In conjunction with statistical models, inputs from microscopic calculations can be used to make predictions for prompt neutron and gamma emission spectra, quantities which can be experimentally measured. Here we characterize the scission mechanism within TDDFT and estimate the number of scission neutrons and their kinetic energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.