Abstract

Fibers made of elements such as carbon, aramid and glass have higher mechanical properties than other conventional textile fibers and they enable the production of light weight composites as end products. Furthermore, commingling hybrid yarns generally have a characteristic feature so that their components are distributed homogeneously enough over the yarn cross section. A normal air texturerising machine was modified to produce commingling hybrid yarns for test samples. Different process parameters were applied to produce the hybridized yarn samples. However, these process parameters turned out to have little effect on the filament distribution over the hybrid yarn cross section in terms of homogeneity. The analysis in this paper is focused on the pattern of mixing of filaments over a cross section of hybrid yarns according to different combinations of reinforcement and matrix filament yarns through microscopic view. The volume content of filament in hybrid yarn cross section was maintained at 50% for both reinforced and matrix, and the hybrid yarns count at 600 tex throughout experiments. It was concluded from the experiments that the diameters of reinforcement and matrix filaments have strong effects on the pattern of mixing of filaments over a cross section of hybrid yarns such that the hybrid yarns with more or less equal diameters of reinforcement and matrix filaments showed considerably even distributions over the hybrid yarn cross section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.