Abstract

The interplay between the collective dynamics of the quadrupole and octupole deformation degree of freedom is discussed in a series of Sm and Gd isotopes both at the mean-field level and beyond, including parity symmetry restoration and configuration mixing. Physical properties such as negative-parity excitation energies and $E1$ and $E3$ transition probabilities are discussed and compared to experimental data. Other relevant intrinsic quantities such as dipole moments, ground-state quadrupole moments or correlation energies associated with symmetry restoration and configuration mixing are discussed. For the considered isotopes, the quadrupole-octupole coupling is found to be weak and most of the properties of negative-parity states can be described in terms of the octupole degree of freedom alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.