Abstract

We propose density functional theory for diblock copolymers in two dimensions. Our theoretical framework is based on Wertheim's first order thermodynamic perturbation theory. Using the proposed approach, we investigate the structure and phase behavior of monolayers of symmetric diblock copolymers. We find that the phase behavior of symmetric diblock copolymer monolayers is similar to that in 3D. This includes the scaling of the equilibrium lamellar width with chain length. We find that the topology of the resulting phase diagrams depends on the chain length and the unlike segment interaction incompatibility and involves either one, two, or three triple points (one of them being the peritectic point). We expect that a similar phase behavior could be obtained for monolayers of colloidal suspensions with carefully tuned interparticle interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.