Abstract

[Background] Predictions of spectroscopic properties of low-lying states are critical for nuclear structure studies. Theoretical methods can be particularly involved for odd-mass nuclei because of the interplay between the unpaired nucleon and collective degrees of freedom. Only a few models have been developed for systems in which octupole collective degrees of freedom play a role. [Purpose] We aim to predict spectroscopic properties of odd-mass nuclei characterized by octupole shape deformation, employing a model that describes single-particle and collective degrees of freedom within the same microscopic framework. [Method] A microscopic core-quasiparticle coupling (CQC) model based on the covariant density functional theory is developed, which includes collective excitations of even-mass core nuclei and single-particle states of the odd nucleon, calculated using a quadrupole-octupole collective Hamiltonian combined with a constrained reflection-asymmetric relativistic Hartree-Bogoliubov model. [Results] Model predictions for low-energy excitation spectra and transition rates of odd-mass radium isotopes $^{223, 225, 227}$Ra are shown to be in good agreement with available data. [Conclusions] A microscopic CQC model based on covariant density functional theory has been developed for odd-mass nuclei characterized by both quadrupole and octupole shape deformations. Theoretical results reproduce data in odd-mass Ra isotopes and provide useful predictions for future studies of octupole correlations in nuclei and related phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.