Abstract

Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in the arteries and is a leading cause of heart disease and stroke in developed and developing countries.1 Animal models have become increasingly important tools for addressing key mechanistic and therapeutic questions that cannot be answered from human studies of atherosclerosis. However, the small-scale vascular structures in genetically engineered mice require labor-intensive histomorphometric techniques to quantify lesions. Recently, a new technique has emerged to image ex vivo blocks of soft tissue by staining tissue with metal solutions, then scanning with a microscopic computed tomography (microCT) instrument (Figure I in the online-only Data Supplement).2 This technique was originally applied to the study of the developing heart in embryos3 and fetuses (Figure II in the online-only Data Supplement) but can also be applied to the en bloc imaging of the heart, great vessels, and lesions thereof. By this method, tissues are left intact, but one can employ image analysis to create “virtual” histological …

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.