Abstract
Colloidal crystalline films were prepared from poly(styrene-co-2-hydroxyethyl methacrylate) (PS-HEMA) latex particles by evaporative deposition. The hexagonally ordered surfaces of the colloidal crystals (CCs) were transformed with styrene vapor at room temperature to interconnected colloidal arrays (ICAs) that have a honeycomb-like ridge of polymer surrounding hexagonally ordered dimples in the surface. When the styrene vapor temperatures were increased systematically to 45 degrees C, the regularity of ICA structure decreased and finally disappeared. Images from transmission electron microscopy (TEM) and from atomic force microscopy (AFM) show that the surfaces of the PS-HEMA particles and the ICAs have raspberry textures. Monolayer CCs and ICAs fabricated on TEM grids were analyzed by energy dispersive spectroscopy (EDS) to determine the elemental compositions of the different regions of the textured surfaces. Carbon, oxygen, and sulfur were distributed all over the surface of the CC. While carbon was distributed over the entire surface of the ICA, oxygen, sulfur, sodium, and potassium were concentrated mainly on the ridges of the honeycomb and not in the dimples of the ICA. The results are discussed in terms of a mechanism of transformation of the CC to the ICA in which styrene monomer swells the polystyrene-rich regions of the particles, and the swollen polystyrene rises to the surface. The polyHEMA-rich regions of the particles maintain the hexagonal periodicity, and liquid styrene evaporates to leave a more polystyrene-rich textured surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.