Abstract
Tendons exhibit a hierarchical collagen structure, wherein higher-level components, such as collagen fibres and fascicles, are elongated, slid, and rotated during macroscopic stretching. These mechanical behaviours of collagen fibres play important roles in stimulating tenocytes, imposing stretching, compression, and shear deformation. It was hypothesised that a lack of local fibre behaviours in healing tendon tissue may result in a limited application of mechanical stimuli to cells within the tissue, leading to incomplete recovery of tissue structure and functions in regenerated tendons. Therefore, the present study aimed to measure the microscopic strain field in the healing tendon tissue. A central third defect was created in the patellar tendon of mice, and the regenerated tissue in the defect was examined by tensile testing, collagen fibre analysis, and local strain measurement using confocal microscopy at 3 and 6 weeks after surgery. Healing tissue at 3 weeks exhibited a significantly lower strength and disorganised collagen fibre structure compared with the normal tendon. These characteristics at 6 weeks remained significantly different from those of the normal tendon. Moreover, the magnitude of local shear strain in the healing tissue under 4% tissue strain was significantly smaller than that in the normal tendon. Differences in the local strain field may be reflected in the cell nuclear shape and possibly the amount of mechanical stimuli applied to the cells during tendon deformation. Accordingly, restoration of a normal local mechanical environment in the healing tissue may be key to a better healing outcome of tendon injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.