Abstract

Homogenization theory is used to calculate the macroscopic dielectric constant from the quantum microscopic dielectric function in a periodic medium. The method can be used to calculate any macroscopic constitutive relation, but it is illustrated here for the case of electrodynamics of matter. The so-called cell problem of homogenization theory is solved and an explicit expression is given for the macroscopic dielectric constant in a form akin to the Clausius-Mossotti or Lorentz-Lorenz relation. The validity of this expression is checked by showing that the macroscopic dielectric constant is causal and has the expected symmetry properties, and that the average of the microscopic energy density is the macroscopic one. Finally, the general expression is applied to Bloch eigenstates. Finally, the corresponding many-body problem is briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.