Abstract
Recent advancements in computational science and interfacial measurements have sparked interest in microscopic water droplets and their diverse behaviors. A previous study using nonlinear spectroscopy revealed the heterogeneous wetting phenomenon of silica glass in response to humidity. Building on this premise, we employed high-resolution atomic force microscopy to investigate the wetting dynamics of silica glass surfaces at various humidity levels. Our observations revealed the spontaneous formation of nano-water droplets at a relative humidity of 50%. In contrast to the conventional model, which predicts the spreading of nanodroplets to form a uniform water film, our findings demonstrate the coexistence of nano-water droplets and the liquid film. Moreover, the mobility of the nano-water droplets suggests their potential in inducing the transport of adsorbates on solid surfaces. These results may contribute to the catalytic function of solid materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.