Abstract

The collective dynamics of low-energy fission in $^{238}\mathrm{U}$ is described within a time-dependent formalism based on the Gaussian overlap approximation of the time-dependent generator coordinate method. The intrinsic deformed configurations of the nucleus are determined from the self-consistent Hartree-Fock-Bogoliubov procedure employing the effective force D1S with constraints on the quadrupole and octupole moments. Fragment kinetic energy and mass distributions are calculated and compared with experimental evaluations. The effect of the collective dynamics along the fission paths and the influence of initial conditions on these distributions are analyzed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.