Abstract

The effect of chemical–mechanical polishing and high-temperature furnace annealing at temperatures ranging from 1000 °C to 1600 °C on nitrogen-doped crystalline 4H:SiC was investigated. Techniques used to characterize the samples included environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The ESEM micrographs and EDS data indicated that there were structural defects on the unannealed sample that did not propagate into the sample or vary in composition from the bulk. The sample annealed at 1000 °C showed oxygen-rich and carbon-depleted surface defects. Annealing at temperatures above 1200 °C introduced defects that grew out of the sample surface. These were carbon and oxygen rich, but depleted in silicon. This supported the XPS data, which showed an increase in the surface C bonding with annealing temperatures above 1200 °C. The XPS data also suggested that the oxycarbide content may be increasing on annealing above 1200 °C. Raman micro-probe data from the defects on the sample annealed at 1200 °C showed the maximum shift in the transverse optical phonon mode at 776 cm-1, indicating that the beginning of carbon out-diffusion may be accompanied with structural changes. Optimal annealing temperatures are thus below 1200 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.